Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis

نویسندگان

  • Preeya T. Shah
  • Rebecca Martin
  • Yanling Yan
  • Joseph I. Shapiro
  • Jiang Liu
چکیده

Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Carbonylation of an Amino Acid Residue of the Na/K‐ATPase α1 Subunit Determines Na/K‐ATPase Signaling and Sodium Transport in Renal Proximal Tubular Cells

BACKGROUND We have demonstrated that cardiotonic steroids, such as ouabain, signaling through the Na/K-ATPase, regulate sodium reabsorption in the renal proximal tubule. By direct carbonylation modification of the Pro222 residue in the actuator (A) domain of pig Na/K-ATPase α1 subunit, reactive oxygen species are required for ouabain-stimulated Na/K-ATPase/c-Src signaling and subsequent regulat...

متن کامل

Involvement of reactive oxygen species in a feed-forward mechanism of Na/K-ATPase-mediated signaling transduction.

Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of...

متن کامل

Protein Carbonylation of an Amino Acid Residue of the Na/K-ATPase a1 Subunit Determines Na/K-ATPase Signaling and Sodium Transport in Renal Proximal Tubular Cells

Background-—We have demonstrated that cardiotonic steroids, such as ouabain, signaling through the Na/K-ATPase, regulate sodium reabsorption in the renal proximal tubule. By direct carbonylation modification of the Pro222 residue in the actuator (A) domain of pig Na/K-ATPase a1 subunit, reactive oxygen species are required for ouabain-stimulated Na/K-ATPase/c-Src signaling and subsequent regula...

متن کامل

Na/K-ATPase Signaling and Salt Sensitivity: The Role of Oxidative Stress

Other than genetic regulation of salt sensitivity of blood pressure, many factors have been shown to regulate renal sodium handling which contributes to long-term blood pressure regulation and have been extensively reviewed. Here we present our progress on the Na/K-ATPase signaling mediated sodium reabsorption in renal proximal tubules, from cardiotonic steroids-mediated to reactive oxygen spec...

متن کامل

Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling

The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood pressure regulation. Recently, cardiotonic steroids (CTS)-mediated Na/K-ATPase signaling has been shown to regulate fibrosis, renal proximal tubule (RPT) sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt diet. Reactive oxyge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016